
Paricle Filter based SLAM and Textured Map
Generation

1st Hao Xiang
department of Electrical and Computer Engineering

UC San Diego
haxiang@ucsd.edu

Abstract—simultaneous localization and mapping (SLAM) is a
fundamental problem in the robitics field and has a wide range of
applications in the High Definition Map and autonomous driving
domain. In this report, I implemented the Particle Filter based
SLAM and utilized the 2D image and 3D space association to
create the texture map which could provide detailed texture and
color information in the occupancy grid. Also, in this report, I
will introduce the algorithms and techniques I used in order to
make the particle filter more stable and accurate.

Index Terms—SLAM, Particle Filter, Texture Map

I. INTRODUCTION

SLAM aims to build a map from an unknown environment
while keeping the trajectory of the agents. Leonard, John etc.
[2] first introducted the concept of SLAM. Since then, SLAM
has gradually become a key problem in the mobile robotics
and has developed several approaches including Graph-SLAM
[4], EKF-SLAM [1], Fast-SLAM [3] etc. The defficulty of
the SLAM problem comes from the chicken-or-egg situation,
i.e. the environment and the location both are unknown while
estimating one needs the information of the other unknown
one.

SLAM is very useful in many domain like outdoor/indoor
robot navigation, building local map/global map as well as
terrian mapping in the space. And with the development of
deep learning and semantic segmentation, there is also new
research on semantic slam.

In this project, I use partilce filter based approach to do the
SLAM. Use particles as the state proposal and each maintain a
weight which is the confidence for that state given the privous
information. Use Filter techniques – prediction and update, I
can get better locations of the particles, thus better estimation.
Meanwhile, I use the particle with the highest confidence as
current state and transform the lidar to head frame, then to
body frame, then to wolrd frame by using the assumption that
the current sate of the robot is the particle with the highest
confidence. Then I update the map based on lidar scan via
log-odds. If the log-odds of the cell is greater than some
threshold, then predict the cell as occupied, otherwise free.
After updating the map, we can use the updated map for the
update step in the next iteration. Also I implement the texture
map by utilizing the kinect camera. Associate the depth image
and rgb color and then associate them with the map. I will
discuss the technical details in the technical approach section.

II. PROBLEM FORMULATION

SLAM: Given the lidar scan data z1:T , head angles , relative
odometry u1:T between last reading, we want to estimate
the robot’s pose x1:T and occupancy grid map m such that
xt,m = arg maxxt,m p(x1:t,m|z1:t, u1:t).

Here the substript t is the information for current time
(Here my notation is different from the slides). Like ut
is the transformation between time t − 1 and t and zt is
the observation at current state xt. This problem can be
subdevided to Localization and Mapping problem.

Localization: Assume the map m is known, given the
observation z1:l and relative odometry u1:k as the motion input
where l ≤ t and k ≤ t, we want to estimate the xt s.t. xt =
arg maxxt

p(xt|z1:l, u1:k).
As a special case, when l = t and k = t, then it is a update

step. When l = t− 1 and k = t, it is a prediction step.
Mapping: Assume the state x1:t is known, we want to

estimate the m s.t. m = arg maxm p(m|z1:t, x1:t). Assume
the cell is independent of each other, then we need to estimate
p(m|z1:t, x1:t) =

∏
i p(mi|z1:t, x1:t).

Textured Map: Assume we know the map m, the tra-
jectory of the robots x1:T , the head angles over time
head angles1:T , as well as the depth image depth1:T

and rgb image rgb1:T , we want to project the colored ground
points onto the occupancy grids.

III. TECHNICAL APPROACH

SLAM problem contains pose estimation and mapping. For
the lidar, I will do a ground removal and restrict the distance of
the lidar data. Before doing prediction and update, I choose
to use the first lidar scan to build an initial map. For pose
estimation, I use particle filter and it consists of prediction step
(motion model) and update step (observation model). After
that, I can get a better estimation of the robot’s pose and use
it to update the map. In this section I will describe the detail
steps for above steps and discuss the techniques I used for
better performance. After that, I will discuss the approach for
texture mapping.

A. Data Processing
This section is implemented in the dataloader.py file.
1) Data Synchronization For each Lidar data, I search the

nearset Joint data that is ahead of Lidar data in the time.
And use two pointers (indx1 for lidar data and indx2

for joint data) to keep track of the index of two data.
Initialize two pointers to zero. And start search from
indx2 to the end of the joint data unitil it hits the first
data that is ahead of current lidar data. Update indx1
and repeat this process for the next iteration. In such a
way, the data synchronization is O(N) which faster than
just using np.argmax each time, which takes O(N2)
overall.

2) Downsampling In order to make the codes run faster
and easier to debug, I implement a downsampling ap-
proach so the dataloader will load data in specified step
length. I will calculate cumulative for the delta pose
before the iteration begins. And for each iteration, I will
output the delta pose between current time t and time
t− step by using the difference beween the cumulative
sum. In such a way, I can achive O(N) time complexity
for iterating all the data. After experiments, I find that
sometimes the downsampling result would be even better
than the original full frame. This may due to the noise
of the lidar points as well as the drifts of the pose
estimation.

3) Lidar data processing and ground removal Since the
lidar data has the maximum distance, and some points
that are too near the robot may be the points that hit the
rotbo’s body. Thus I restrict the distance of the lidar data
to 0.1m to 30m. Also when the robot move its head, the
lidar point may hit the ground. Thus it is needed to do
a ground removal. A simple approach would be after
transforming the lidar points to the world frame, I will
remove the points that has the z-axis less than 0.1m. For
the computation efficiency, I choose to do the ground
removal in the body frame. I will remove the points that
has the z-axis less than 0.1 − 0.93 = −0.83m (0.93 is
the height of the body frame).

B. Particle Filter

Particle FIlter uses delta functions (AKA particles µ(k)
t|t , k =

1 . . . N) to represent the probability pt|t and pt+1|t with the
weights α(k)

t|t representing the probability (AKA confidence)
of the particle. By using sets of delta functions, we can avoid
the computation difficulty of intergral and we just need to
update the weights and positions of each particles. And it
would also output the corresponding lidar and head angle data
and increase the index by the step size.

1) Prediction Step For prediction step, I use the motion
model to all the particles with noise generated from
Gaussian noise. The formula is shown in equation.1.

µ
(k)
t+1|t ← µ

(k)
t|t + ut + noise (1)

Here ut is the relative odometry in current time stamp.
For the noise of x and y position, I set the standard
deviation proportional to the magnitude of the motion
inputs (delta pose in this project) and set the mean to
zero. For yaw, I set the mean to zero and set the standard
diviation to 0.01 to 0.1. Also for all the noise, I add

them indepentently. After adding the noise, I maintain
the weights for each particles, that is to set α(k)

t+1|t = ᾱ
(k)
t|t

2) Update After observing the lidar data, I transform the
lidar to the head frame and then to the body frame.
After that I use the pose of each particles to calculate the
positions of the lidar scan in the World frame. The detail
of transformation is discussed in the transformation
section. After that, I use the scan and map to calculate
the correlation score by using the following formula.

corr(z,m, x) = max
∆x∈D

count(Body2World (z, x+ ∆x),m)

(2)

ph(z|x,m) =
ecorr(z,m,x)∑
v e

corr(v,m,x)
(3)

(4)

Here the count functon would count the number of
points that agree with each other. Since ph(z|x,m) ∝
corr(z,m, x), we use corr(z,m, x) to update the
weights and then normalize weithts to sum to 1. Due
to the neumerical concern, I subtract the largest value
of all the corr(z,m, x) from each corr(z,m, x). To be
more specific, I use:

corr(z,m, µ
(k)
t+1|t) = corr(z,m, µ

(k)
t+1|t)

− max
µ
(k)

t+1|t

(corr(z,m, µ
(k)
t+1|t))

α
(k)
t+1|t+1 = α

(k)
t+1|tcorr(z,m, µ

(k)
t+1|t)

α
(k)
t+1|t+1 =

α
(k)
t+1|t+1∑
α

(k)
t+1|t+1

I also add a variation in yaw of each particle. For each
particle, I would add ∆yaw ∈ {−0.2,−0.1, 0, 0.1, 0.2}
to the original yaw. And calculate the correlation for all
of them and choose the one with the largest correlation
as the yaw value for this particle so as to make the
particles have a better estimation of the position and
potentially reduce the needs of large amount of particles
to achive the same performance.

3) Resampling When the number of effective particles
(Neff = 1∑N

k=1(α
(k)

t|t)2
) is less than a threshold 20%N

where N is the total number of particles, I will do a
resampling.

C. Mapping
I use occupancy grid to do the mapping and assume each

cell mi is independent. Occupancy grid discretize continuous
space into a set of cells each with a binary value – one
means occupied while zero means free. I maitain the cell log-
odds ratio λi,t. I choose the particle with the highest weight
as the estimation of current state. And transform the lidar
to the world frame using this particle. Then I calculate the
positions of lidar points in the occupancy grids. Then I use 2D
Bresenham’s ray tracing algorithm to search for the free cell in

the occupancy grids. Decrease the λi, t for the free cells by the
predefined log-odds and increase the λi,t for occupied cells by
the same log-odds. If the λi,t of the cell is greater than some
threshold, then predict the cell as occupied otherwise predict
it as free.

λi, t = λi, t− 1 + ∆λi, t− 1 (5)

Here log-odds ratio λi,t = log(o(mi|z1:t, x1:t)) where
o(mi|z1:t, x1:t) = p(mi=1|z1:t,x1:t)

p(mi=−1|z1:t,x1:t)
. In this project, we simply

assume the ∆λi, t = const. And I choose to set this constant
to be log(4). The threshold of free and occupied cell is also
a hyper-parameter. And this one would influence the results
of map and reflect the prior belief of the map. Like if the
threshold is high, then we tend to predict free cell. Simiplarly,
if it is low, then we tend to predict occupied cell. After
experiments, I find out 0.6 to 4 works good for this project.
Also I do a clip operation on the log-odds ratio to make the
ratio whithin some range so that accumulated error can be
corrected and the model would not be over confident. Also
before doing the prediction and update step, I use the first
scan to update the map as the initial map.

D. Transformation
In this subsection, I will discuss the transformation and

ground removal techniques used in both SLAM and texture
map.

1) Lidar To Head frame First transform the lidar points
from polar frame to cartesian coordinate. Use the head
angles in the joint angle data to build the rotation matrix.
First do a rotation around y-axis with angle head and
then a rotation around z-axis with angle neck.

xhead = Rz(yaw) ∗Ry(pitch) ∗ xlidar + (0, 0, 0.15)T

(6)

Here the 0.15m is the distance between lidar and head.
2) Head To Body frame Since the head frame and body

frame only consists of a z-axis offset. Thus I can use
equation.7

xbody = xhead + (0, 0, 0.33)T (7)

Here 0.33 is the distance between head and center of
mass.

3) Body To World frame Take the particle with the highest
weights as the estimated state i.e. state = [x, y, yaw].
Then do the following transformation.

xworld = Rz(state[2]) ∗ xbody + (state[0], state[1], 0.93)T

(8)

4) World To Occupancy Grid Use the following equation
to calculate the coordinates of the cells.

xcell = ceil((x[0]−Map.xmin)/Map.res)− 1 (9)
ycell = ceil((x[1]−Map.ymin)/Map.res)− 1 (10)

Here Map.res is the resolution for the occupancy grid
that is the length of each cell. Map.xmin/Map.ymin

and Map.xmax/Map.ymax is the min and max
value for the occupancy grid in meters. This can be
configured in the configuration file config.yaml.
For lidar0, I choose to set res = 0.05m, and
−20m for Map.xmin/Map.ymin and 20m for
Map.xmax/Map.ymax.

5) depth image To 3D image frame For the depth image,
we have the information of Z, making it possible to
project the image back to the 3D space.

Po =

X0

Yo
Zo

 = ZoK
−1

xy
1

 (11)

Pc = R−1
r Po (12)

where K is the intrinsic matrix. Po and Pc is the
representation in optical frame and camera frame. Rr
is the rotation from a regular to an optical frame.

6) IR To RGB image frame Use the extrinsic matrix R
and T , we can transform the points from 3D camera
frame of depth c − depth to 3D camera frame of rgb
c − rgb. Use the intrinsic matrix Krgb, we can then
project the points in the camera frame to the optical
frame and then the pixel frame.

Pc−rgb = R ∗ Pc−depth + T (13)
Po−rgb = Rr ∗ Pc−rgb (14)xy

1

 = Krgb ∗ Po−rgb/Zo−rgb (15)

E. Texture Map
After transfering depth image to 3D point cloud, assign the

colors to the 3D points in the depth image frame. Then find
the correct trajectory of current time stamp. Transform the 3D
points to the head frame, then to body frame by using the
head angles at current time stamp and finally to the world
frame using the current pose. Only keep the points that have
the z-axis less thatn 0.1m – keep the floor 3D points. Then
transform those 3D points to the occupancy grid and assign
the color to the cell.

1) Data Preprocessing Since the camera is distored, thus
I use cv2.undistort to do the calibration for the
depth and rgb image.
Due to the noise of stereo cameras, I choose to clip the
depth of the image to 0.4m to 4.5m.

2) Assign Color to the points in the depth 3D image
frame Since we have the depth image, we can projec the
points back the 3D image frame. And use the extrinsic
matrix between IR and RGB to calculate the points in the
RGB image frame. And use RGB’s intrinsic to calculate
its pixel representation. Then we can assign the colors
to the 3D points in the depth image frame.

3) Associate the trajectory, head angles and rgb/depth
data While doing SLAM ,I choose to record the tra-
jectory, head angles and the time stamp so that the
texture map would be much faster without the need to

do the whole SLAm again! After that use the same syn-
chronization technique discussed in the data processing
section to find the data in the current time frame.

4) Transform from depth image frame to the grid
cells Use the techniques discussed in the transformation
section to transfrom the depth image to the points cloud
in the 3D image frame. Then use the distance of kinect
and head (0.07m) to transform the points to the head
frame. Then transform points to body frame and then use
the current pose to transform points to the world frame.
And transform them to the occupancy grids. Assign the
color to the corresponding cells.

IV. RESULT

In this section, I will show the results of the experiments
and analyze the results and show the techniques that I have
used to further improve the performance.

A. Mapping using the first scan

The result for the first scan of lidar0 dataset is shown in
the figure.1. The black cell is predicted as free cell while the
black one is occupied. We can see a rough shape of the wall
and corridor. The shape is not very solid since the lidar scan is
very sparse. This result can be used to verify the correctness of
transformation by looking at the map like figure .2 generated
in the future time stamps.

Fig. 1: Mapping result of first lidar scan.

B. Dead-Reckoning

Here I will present the result for dead-reckoing – use
prediction-only particle filter with no noise and single particle.
The results of mapping and trajectory prediction is shown in
figure.2. As we can see, the wall starts to shift and the fringe of
the wall is unclear. Also there are some sparse points outside
of the room. This is due to the result of drift and error of
motion model. Also the trajectory seems to oscillate. And the
start point and end point is very close! Thus the prediction
step is correct.

Fig. 2: Results for dead-reckoing on dataset 0. The above
figure is the occupancy grid and the below plot is the trajectory.

C. SLAM results

I have reported the generated Gif file for better vitualizing
the process of SLAM. Please see the file lidar0.gif,
lidar3.gif and colormap.gif. Those files are in the
zip file that I submitted in the code section. Also, I have
attached all the images for vitualization and analysis at the end
of the report. The images of generating map and trajectory at
different time stamps are shown at the end of the report as
well as the textured map.

The best result I can get for Lidar0 is shown in figure.3.
But the parameters for this result can not generalize well to
the othe dataset. So in the following part, I choose to report
the parameters that could have better generalization and show
the corresponding result.

Fig. 3: Results for lidar dataset 0

The result for lidar0 dataset is shown in the figure.4. Here
I choose the ∆λi,t = log(4) I clip the log-odds ratio to avoid
too large or too small values to force the value in the range
−10log(4) to 4log(4). And the threshold for deciding the
free/occupied is 2log(4) – if cell’s log-odds ratio is greater
than this threshold, then it is predicted as occupied otherwise
as free. Also I experimented with the number of particles,
10, 20, 100, 1000, 2000. And I notice that as the number of
particles increase, the results tends to be better since we have
a larger probability to find a better pose estimation. Also for a
better calculation of the correlation function, I add the ∆yaw
in the update step. In the prediction step, I choose to add
noise proportional to the magnitude of the motion input as
discussed in the technical approach – set the standard diviation
of noise to 10% of the relative delta odometry input and zero
mean. Also for the numerical stability of softmax operation, I
choose to normalize the input of softmax to be less than zero
by subtracting the maximum value.

Robot will first go staight and then turn around before
moving back. As robot goes straight, the map is easier to
grow. But at the turning point, due to the larger yaw value, it
is harder to estimate the pose. During experiments, I find that
if the number of particles or the noise is too small like 1e− 5
is very small, the wall will shift a lot at the turning point. The
result will just like the dead-reckoing in figure.2. If we add
more particles like 50−1000, then the map will become more
stable. This is because we have more particles to estimate
the true pose of the robot. Also the yaw variation is very
important. I add the variation of yaw in the map correlation
step, and find that after doing this, I can reduce the number
of particles from 200 to 50 to reach the same performance.
Some improvements I have tried and discussion

1) Adding ∆yaw value to the correlation calculation. Add
the ∆yaw value with the highest correlation value to
the yaw value of the particles. In the project, I set
∆yaw ∈ {−0.2,−0.1, 0, 0.1, 0.2}. After doing this, I
can make adjustment of particle’s position according to
the different oritation of the robot so as to make robot

have better estimation of the position which could agree
better with the current map.

2) Magnitude of noise. In motion model, I will add Gaus-
sian noise with zero mean. In order to make the noise
whithin reasonable range, I choose to add noise propor-
tional to the motion input. For example if the motion
input is x, y, yaw, then I will set the standard diviation
of the noise for x as |x|10 , noise for y as |y|10 and noise
for yaw as |yaw|. The magnitude of the noise if very
important in the experiment, if the noise is too high, then
the map will shift a lot. If it is too small we can’t get
the proper estimation of the true state. Also, I add more
noise to the yaw value because in the dead-reckoing, the
map become bad just when the robot is turning around.
Thus I choose to encourage particles to explore more on
the yaw axis.

3) Comparison with dead-reckoing. As we can see the
results of full SLAM is much better than the dead
reckoing. This is because dad-reckoing simply add the
odometry to previous state, thus the error will accu-
mulate and finally lead to inaccurate estimation. After
adding noise, update and resampling step, we can have
many particles and we can use the correlation and
resampling to filter out impossible positions, leading to
better approximations.

4) Analysis of loop closure. The start point and end point of
trajectory in lidar0 dataset works pretty good, indicating
that the algorithm can find the correct position and adjust
the position accordingly.

5) Comparison between different dataset. As I have men-
tioned, the best parameters for lidar0 dataset works not
very well in the other dataset. As shown in the figure.4
and figure.5, the wall of lidar0 is more clear while the
war of lidar3 is more vague. Thus the parameters works
better in the lidar0 dataset. This is due to the scene of
lidar0 is simpler while lidar3 has slightly convoled scene
like the asphalt door and some metal materials in the
door which could potentially influence lidar’s intensity.

6) Hardness of finding one set of parameters to generate
to all the dataset. For example, I use the exact same
parameters and apply the algorithm to the lidar1 dataset.
The result is shown in the figure.6. As we can see,
when the robot moves forward, the result is pretty
good. But when the robot starts the second turning, the
results start to get poor. This is due to that ou previous
parameters wokrs good for simpler scene. While lidar1
contains longer distance and harder scenes, making the
old parameters hard to generalize to this scene.

The results for the lidar3 dataset is shown in the figure.5.

D. Textured Map

The result for textured map for lidar dataset 0 is shown in
figure.7. Due toe the limited accuracy of depth camera and
depth camera cannot accuratly estimate the depth in too short
or too long distance, thus I choose to clip the depth so the
depth is within the range 0.5m to 6m. After assigning the

(a) time stamp 1 (b) time stamp 4000

(c) time stamp 6800 (d) time stamp 9010

(e) time stamp 10510 (f) time stamp 12048

Fig. 4: SLAM results for lidar0 dataset. The above figure is the occupancy grids while the below is the trajectory of the robot.
Here I plot 6 figures. Each is a result at the time stamp specified.

point clouds generated from depth image with the rgb value
and transfering them into the world frame, I choose toe keep
the points with the z axis less than 0.1m as the ground. And
then project those points to the cell and color the cell. As figure
.7 shows, as robot moves the cells are gradually colored with
the color of the floor.

Further improvements Here I brefiely discribe some algo-
rithms that I think could improve the performance.

1) Sometimes the robot will color the wall as well. This is
because in the original picture the foot of the wall have
some grey color. Thus just use the threshold to filter the
floor is not accurate enough. To improve this, I think we
can utilize the information of the occupancy grid. That
is we only color the cells that is free.

2) Use rgb and depth image to help localization. I think
we can also use the 3D point clouds generated by

(a) time stamp 1 (b) time stamp 4000

(c) time stamp 6001 (d) time stamp 8001

(e) time stamp 1001 (f) time stamp 12385

Fig. 5: SLAM results for lidar3 dataset. The above figure is the occupancy grids while the below is the trajectory of the robot.
Here I plot 6 figures. Each is a result at the time stamp specified.

depth and rgb image to help do the update step and
map correlation calculation. Currently I only use the
lidar scan to help localization and after the whole slam
process do the coloring. But I think we can also use
the rgb and depth image to help the robot localize itself
and do the coloring at the same time. In this project,
due to the time limit, I choose the former approach with
the computation concer. But I think utilize multi-sensor

information would also help robot do the slam.

REFERENCES

[1] Guoquan P Huang, Anastasios I Mourikis, and Stergios I Roumeliotis.
Observability-based rules for designing consistent ekf slam estimators.
The International Journal of Robotics Research, 29(5):502–528, 2010.

[2] John J Leonard and Hugh F Durrant-Whyte. Mobile robot localization
by tracking geometric beacons. IEEE Transactions on robotics and
Automation, 7(3):376–382, 1991.

(a) time stamp 1 (b) time stamp 2001

(c) time stamp 10001 (d) time stamp 14001

(e) time stamp 28001 (f) time stamp 34208

Fig. 6: SLAM results for lidar1 dataset. The above figure is the occupancy grids while the below is the trajectory of the robot.
Here I plot 6 figures. Each is a result at the time stamp specified.

[3] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit,
et al. Fastslam: A factored solution to the simultaneous localization and
mapping problem. Aaai/iaai, 593598, 2002.

[4] Sebastian Thrun and Michael Montemerlo. The graph slam algorithm with
applications to large-scale mapping of urban structures. The International
Journal of Robotics Research, 25(5-6):403–429, 2006.

(a) time stamp 60 (b) time stamp 80

(c) time stamp 100 (d) time stamp 120

(e) time stamp 180 (f) time stamp 227

Fig. 7: Results of textured map. (a)-(f) is the texture map over time. And iteration 227 is the last image and the last time
stamp. The trajectory is the same as the lidar0 dataset.

