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Abstract—This is the report for Hao’s Project 3 Visual In-
ertial SLAM (VI-SLAM). In this report, Hao reviewed the key
component of VI-SLAM and the techniques Hao has tried to
improve the performance. In this project Visual-inertial SLAM
utilize IMU data and camera data to joint estimate the inverse
pose of robot and the 3D positions of landmarks.

Index Terms—SLAM, EKF, VIsual-Inertial

I. INTRODUCTION

SLAM aims to build a map from an unknown environment
while keeping the trajectory of the agents. Leonard, John etc.
[2] first introducted the concept of SLAM. Since then, SLAM
has gradually become a key problem in the mobile robotics
and has developed several approaches including Graph-SLAM
[4], EKF-SLAM [1], Fast-SLAM [3] etc. The defficulty of
the SLAM problem comes from the chicken-or-egg situation,
i.e. the environment and the location both are unknown while
estimating one needs the information of the other unknown
one.

SLAM is very useful in many domain like outdoor/indoor
robot navigation, building local map/global map as well as
terrian mapping in the space. And with the development of
deep learning and semantic segmentation, there is also new
research on semantic slam.

EKF-based SLAM algorithm uses moment matching idea
by leveraging linear approxiation techinques to make the
calculation feasible. Due to the Gaussian assumption, EKF can
estimate the positions in continuous 3D space while histogram
filter based SLAM can only approxiamte the position in
finite space. Another approach similar to EKF is Unscented
Kalman Filter, it utilize the numerical approximation method
to estimate the joint probability.

In this project, I implemented EKF-SLAM for the task
of Visual-Inertial SLAM by utilizing the stereo camera and
IMU data. To capture the correlations between landmarks and
inverse poses, I utilized joint update. Also I tried several
techniques like feature selection, z-axis fixation etc.

II. PROBLEM FORMULATION

Visual Inertial SLAM: Given the IMU data u1:T , sam-
pling time interval δτt and visual feature observation z1:T
which is detected by stereo cameras, estimate the inverse
IMU pose U1:T and landmark position m, s.t. Ut,m =
arg maxUt,m p(U1:t,m|u1:t, z1:t).

Here the substript t indicate the data for current time.

ut =

[
vt
ωt

]
is the observed IMU data including linear velocity

vt ∈ R3 and rotational velocity wt ∈ R3. δτt is the difference
between time stamps t and time stamps t − 1. Landmark
positions m is the 3D position of all the landmarks.

In this project, we assume the number of total landmarks
are knwon in advance, thus m ∈ R3×M , where M is the
total number of features or landmarks we care about. Ut =
T−1IMU,t ∈ SE(3) is the inverse IMU pose for the time stamp
t. Also in this project, we assume the data association πt is also
known. Visual feature observations are the pixel coordinates
of the feature points in the left and right camera frame, thus
zt ∈ R4×Nt where Nt is the number of features observed at
time frame t. Besides, we also assume the map is static thus
no motion model for thie project’s mapping.

This problem can be subdevided to Localization and Map-
ping problem.

Localization: Assume the world frame landmark coordi-
nates m are known, given the IMU data u1:t and the feature
observations z1:t, we want to estimate the inverse IMU pose
Ut s.t. Ut = arg maxUt

p(Ut|u1:t, z1:t,m).
Mapping: Assume the inverse pose U1:t is known, given

the visual feature observation z1:t, estimate m s.t., m =
arg maxm p(m|z1:t, U1:t)

III. TECHNICAL APPROACH

A. Localization EKF Prediction Step
For the prediction step, assume the prior Ut satisfies

Ut|z1:t,u0:t−1 ∼ N
(
µt|t,Σt|t

)
(1)

And then we have the motion model as equation.2 ,where δτt
is the time discretization.

Ut+1 = exp
(
−δτt ((ut + wt))

∧)
Ut (2)

Thus for the mean µt=1|t ∈ SE(3) and covariance Σt+1|t ∈
R6×6 their update rules are shown as equation.3

µt+1|t = exp (−δτtût)µt|t
Σt+1|t = exp (−δτtuf

t ) Σt|t exp (−δτtuf
t )
>

+W
(3)

where W is the covariance of noise for motion model. After
experimenting with several values for the noise W ranging
from 10−6 − 106, I choose the noise as equation.4

W =


10−2 0 0 0 0 0

0 10−2 0 0 0 0
0 0 10−2 0 0 0
0 0 0 10−1 0 0
0 0 0 0 10−1 0
0 0 0 0 0 10−1

 (4)



Since our IMU is better at estimating the linear velocity, thus I
gave the corresponding correlation slighly smaller value while
giving the one for rotational velocity higher value, meaning
higher unconfidence. Also the hatˆand curly hat f operations
are defined as equation.5

ût :=

[
ω̂t vt
0> 0

]
∈ R4×4 f

ut
:=

[
ω̂t v̂t
0 ω̂t

]
∈ R6×6

(5)

B. Mapping EKF update Step

I first initialize the position of the new landmarks which
means it is their first time being observed. And then update the
EKF mean and covariance for the all the previously observed
landmarks. To be more specifit, for initiliazation, I transferm
the points from pixel coordinate to optical frame and then
transform to IMU frame via the transformation oT

−1
I . After

that I will transform the points from IMU frame to world frame
via the pose of the robot e.i. U−1t .

Po =

XY
Z

 =


Z(uL−cu)

fsu
Z(vL−cv)

fsv
fsu

uL−uR

 (6)

Pw = U−1t oTI
−1Po (7)

For the EKF update step, assume the prior m satisfies:

m|z1:t ∼ N (µt,Σt) (8)

Also we have the observation model as equation.9

zt,i = h (Ut,mj) + vt,i := Mπ
(
oTIUtmj

)
+ vt,i (9)

Thus the update rule for the mean and covariance are shown
in equation.10

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
µt+1 = µt +Kt

(
zt − Mπ

(
oTlUtµt

))
Σt+1 = (I −KtHt) Σt

(10)

Here π(q) is the projection function as π(q) = 1
q3

q. And the
µ
t

is the homogeneous coordinates of µt. Besides the dπ
dq is

dπ

dq
(q) =

1

q3


1 0 − q1q3 0

0 1 − q2q3 0

0 0 0 0
0 0 − q4q3 1

 ∈ R4×4

And Ht ∈ R4Nt×3M is shown in equation.11

Ht,i,j =

{
M dπ

dq

(
oT1Utµt,j

)
oT1UtP

> If correspondence
0 ∈ R4×3 otherwise

(11)
Here I assume V is a diagonal matrix with the value of 1,
thus I ⊗ V will also be a diagonal matrix ∈ R4Nt×4Nt with
element of 1.

C. EKF joint update for Mapping and Localization

For part c, I calculate a joint Ht for both map-
ping and localization and then I calculate the corre-
sponding Kt

(
zt −Mπ

(
oTlUtµt

))
. And use the first 3M

row to update mapping’s mean/variance and the last 6
rows to update localization’s mean/variance. Also I use
Kt

(
zt −Mπ

(
oTlUtµt

))
to update the joint variance. I will

detail the process in the following paragraphs.
Define the means for mapping and localization are µmap,t
and µloc,t respectively. Define the joint covariance as Σt ∈
R(3M+6)×(3M+6). Define the joint Ht ∈ R4Nt×(3M+6) =[
Hmap,t Hloc,t

]
, where Hmap,t ∈ R4Nt×3M is calculated

by using equation.11 like before. And for Hloc,t,i ∈ R4Nt×6,
I use equation.12.

Hloc,t,i = M
dπ

dq

(
oTlµloc,tµmap,j

)
oTl

(
µloc,tµloc,j

)�
(12)

where � is defined as equation.13

s� =

[
I −ŝ
0 0

]
∈ R4×6 (13)

Then I use the joint Ht to calculate Kt by using the
equation.14

Kt = ΣtH
>
t

(
HtΣtH

>
t + I ⊗ V

)−1
(14)

And I would calculate the Kt times innovation as equation.15

δKz = Kt

(
zt −Mπ

(
oTlUtµmap,t

))
(15)

And then I will use the equation.16 to update the mean of
mapping and use equation.17 to update the joint covariance.
Also I use equation.18 to update the mean for the localization.

µmap,t+1 = µmap,t + δKz[0 : 3M, :] (16)
Σt+1 = (I −KtHt) Σt (17)

µloc,t+1 = exp
(

(δKz[3M : 3M + 6, :])
)̂
µloc,t (18)

Also for the prediction step of the localization, I will use
the same process but this time only update part of the joint
covariance. In other words, I will update Σt[3M : 3M +
6, 3M : 3M + 6] ∈ R6×6. This process can be shown in
the following equation.

Σloc,t+1[3M : 3M + 6, 3M : 3M + 6] =

exp
(
−δτtuf

t

)
Σloc,t[3M : 3M + 6, 3M : 3M + 6] exp

(
−δτtuf

t

)>
+W

D. Techniques

1) Fix z-axis: As stated in the problem discription, since
sensor’s movement along the axis is very small, thus we can
assume the axis are the same over time. To model this, I tried
two approaches

*) Set z-axis of µmap,t to 0 after the update step of the
mapping. But during experiment, I find that this approach
would sometimes lead to singular matrix error. I think the



reason for this may due to the fact that we are forcing
z = 0, thus the y-axis in the optical frame is also zero.
According to the stereo camera model as equation.19,
we know that vL = vR = cv . Thus it would introduce
the error when calculating the innovation term since the
observations don’t have fixed vL or vR.

uL
vL
uR
vR

 =


fsu 0 cu 0
0 fsv cv 0
fsu 0 cu −fsub
0 fsv cv 0

 1

z


x
y
z
1


(19)

To solve this problem, I force the vL and vR of ober-
vations to be cv . And the experiment results showed
promising performance as figure.1

Fig. 1: Results for fix z-axis to 0 on dataset 27.

*) Set the z-axis to be the same as the first observed z-
axis value after update step. To be more specific, after
calculating the update step for mapping, I choose to set
the z-axis value to be the one before the update step so
that during the EKF process the estimated z-axis remains
fixed. This approach also demonstrate promising results
as shown in figure.2.

Fig. 2: Results for fix z-axis to the same observed value on
dataset 27.

IV. EXPERIMENT RESULTS

After some experiments, I choose to use 1000 features and
the experiments results demonstrate that using all the feature
points may not increase the performance while needing long
time.

A. IMU-based Localization via EKF Prediction

The results for part (a) are shown in figure.3. In part (a),
I only do the EKF prediction step for the localization. As

we can see as the robot observes the inertial input, the robot
would update its mean and covariance. And the trajectory is
inverse of the estimated mean. Since there is no update step,
thus the robot could not correct its pose. This corresponds to
the accumulated error in the image like (c) in figure.3

(a) dataset 22 (b) dataset 27

(c) dataset 34

Fig. 3: Part (a) results for dataset 22, 27, 34. Localization EKF
prediction step only.

B. Landmark Mapping via EKF Update

The results for part (b) are shown in figure.4.

(a) dataset 22 (b) dataset 27

(c) dataset 34

Fig. 4: Part (b) results for dataset 22, 27, 34. The results are
for landmark mapping via EKF update step.



In this part, I implemented both localization prediction step
and mapping update step but no joint update. As shown in
the figure, the landmark prediction could adjust its position
according to the information of the observation model. But
since there is no update step for the localization, thus the
trajectory is the same as part (a) with accumulated error.

C. Visual Inertial SLAM

The results for part (c) are shown in the figure.5. In this
part, I implemented the full visual inertial slam including
localization prediction step and joint update step. Also I have
attached the experiment results as a gif figure in the zip in
the code part. For readers’ convience, I also plot the process
for SLAM is shown in the feature.7, figure..8, figure.9. (They
are attached at the end of the report.)

(a) dataset 22 (b) dataset 27

(c) dataset 34

Fig. 5: Part (c) results for dataset 22, 27, 34. The results are
for Visual Inertial SLAM including the joint EKF update step
and localization prediction step.

As we can see the results are pretty good! For dataset 27,
the start point and end point is very close to each other while
in part (a) and part (b), the start point and end point are far
away from each other. For dataset 22, the line started from
forth turning point is parallel to the start line while in part
(a) and part (b) the parallel relationship is not satisfied. For
dataset 34, the right turn is almost 90 degree while in the part
(a) and part(b) the degree is near 180, which is very different
from the video. Also the landmark positions become more
accurate! Compared with part (a) and (b), the results have far
less outliers which are far away from the trajectory.

The improvement is largely due to the joint update step.
Joint update step could capture the correlations between land-
marks and inverse pose, making the estimation more accurate.
And during prediction step, robot estimate its inverse pose

via motion model while during update step, robot adjust its
estimated inverse pose according toe the motion model. The
landmark estimation also become more accurate during update
step.

D. Comparison between two different methods for fixing z-axis

As I mentioned in the technical approach section, I tried two
methods to fix z-axis. The first approach is by setting z-axis
of mean to 0 and forcing the observed features’ vL and vR to
cv . The second approach is forcing the z-axis of mean to the
first observed value so that z-axis remains the same over time.

(a) Set z to 0 (b) Set z to first observed value

Fig. 6: Comparison between 2 different methods of fixing z-
axis.

As shown in the figure.6, both approach could reach satisfy-
ing results. But there is a slightly rotation relationship between
two methods. This is because for approach 2, even setting the
z-axis to the previous value, we would still estimate a small
innovation error along this axis, so the model would also try
to fit the z-axis a little bit.

E. Data Association and data processing

Since the data association is stored, thus I use a numpy
boolen array to store the index of the landmark. If the element
is true then it is observed before. Otherwise it is new. And I
use a boolen mask to store the observed features at current
time stamp. If the feature is not [-1,-1,-1], then it is observed
at current time stamp. And its corresnpoding value would be
True.

F. Tensor Speed Up

I use np.tensordot to perform the tensor multiplication
instead of a for loop. So that the joint update could speed up!
And when use 1000 features, it takes me less than 2 minites
to run the whole dataset.

V. CONCLUSION

In this project, I implemented Visual Inertial SLAM and
achive satisfying results for all three dataset. For better per-
formance, I utilize joint update techniques. And I experiment
with 2 fix-z axis techniques. And analysis the methodology
behind them.



(a) frame 0 (b) frame 210

(c) frame 420 (d) frame 720

(e) frame 900 (f) frame 1223

Fig. 7: Process for building SLAM on dataset 34
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(a) frame 0 (b) frame 150

(c) frame 210 (d) frame 420

(e) frame 500 (f) frame 720

Fig. 8: Process for building SLAM on dataset 22.



(a) frame 0 (b) frame 200

(c) frame 400 (d) frame 600

(e) frame 900 (f) frame 1105

Fig. 9: Process for building SLAM on dataset 27.


